首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2007篇
  免费   259篇
  国内免费   24篇
电工技术   28篇
综合类   87篇
化学工业   366篇
金属工艺   212篇
机械仪表   49篇
建筑科学   616篇
矿业工程   80篇
能源动力   79篇
轻工业   3篇
水利工程   63篇
石油天然气   4篇
武器工业   2篇
无线电   48篇
一般工业技术   346篇
冶金工业   95篇
原子能技术   5篇
自动化技术   207篇
  2023年   61篇
  2022年   128篇
  2021年   149篇
  2020年   145篇
  2019年   80篇
  2018年   48篇
  2017年   51篇
  2016年   103篇
  2015年   201篇
  2014年   170篇
  2013年   279篇
  2012年   446篇
  2011年   117篇
  2010年   57篇
  2009年   55篇
  2008年   21篇
  2007年   27篇
  2006年   37篇
  2005年   19篇
  2004年   16篇
  2003年   15篇
  2002年   17篇
  2001年   23篇
  2000年   6篇
  1999年   10篇
  1998年   2篇
  1996年   1篇
  1986年   1篇
  1980年   5篇
排序方式: 共有2290条查询结果,搜索用时 19 毫秒
1.
为解决传统预浸水法存在的浸水时间长、浸水处理范围难以确定等不足,基于土体中水分运移规律,依据可靠度理论、极限状态设计方法及复合 Poisson 过程原理,提出一种消除黄土湿陷性的处理浸水方法——预钻孔浸水法。给出了利用预钻孔浸水法对自重湿陷性黄土地基进行浸水时,水平向及竖直向浸水影响范围的确定模型;在此基础上结合达西定律给出了浸水孔设计参数如孔深、孔间距及浸水孔个数的确定方法。结合铜川某工程,设计进行了现场预钻孔浸水试验,对该方法的合理性进行了验证,并通过现场钻探、现场勘探、室内湿陷性试验等方法对该方法的处理效果进行了评价。该浸水方法具有浸水时间短、浸水影响范围可根据浸水孔布设进行控制等优点,且浸水处理效果良好,完全符合施工要求。  相似文献   
2.
The Mn-modified 0.75BiFeO3-0.25BaTiO3 (75BFBTMn) piezoelectric ceramic possesses a high depolarization temperature of 500 °C and a large piezoelectric coefficient of 110 pC/N, showing the potential for high temperature piezoelectric sensors. However, 75BFBTMn ceramic usually suffers dielectric degradation and abrupt drop of piezoelectric coefficient in the range of 300 °C to 500 °C. Combined the high-energy synchrotron X-ray diffraction analysis with Backscatter-SEM results, it is demonstrated that the electrical thermal instability is owing to the existence of chemical inhomogeneity. The Air-annealing treatment is able to decrease the volume fraction of pseudo-cubic phase and the lattice distortion, removes the chemical inhomogeneity in the grain and free Bi2O3 at grain boundary, and then eliminates dielectric anomalies and piezoelectric degradation with temperature. These results indicate that air-annealing is a simple but effective method to eliminate the chemical inhomogeneity in 75BFBTMn ceramics, thereby improving the property thermal stability for high temperature piezoelectric sensor applications.  相似文献   
3.
Poor antioxidant and thermal-shock capacities of C/C composites thermal barrier coating (TBC) caused by cracking and shedding of coatings has been a major obstacle blocking the development of C/C composites. Herein, in-situ growth of whisker reinforced silicon carbide transition layer and inter-embedding mechanism of multi-gradient coatings were brought into the design of TBC to enhance the antioxidant and thermal-shock capacities. A three-layer gradient coating SiC-SiCw/ZrB2-SiC/ZrSiO4-aluminosilicate glass (ZAG) from inside to outside, in which ZrB2-SiC/ZAG serve as oxygen barrier layers with self-healing ability and SiC-SiCw provides thermal stress buffering and bonding against cracking and shedding of coatings, is designed. The ZAG mainly forms a dense oxygen blocking frontier with self-healing ability through fluidized glass, while the ZrB2-SiC can react actively with infiltrated oxygen in a way of self-sacrifice, preventing oxygen erosion to C/C matrix and SiC-SiCw transition layer. As a result, the collaborative work among layers endows this coating with excellent high temperature service performance. This work provides a new insight for the design of excellent TBC.  相似文献   
4.
Powder Metallurgy and Metal Ceramics - The space holder technique was widely used in manufacturing high melting-point porous metals. Corn powders with a smaller size (11.4 μm on average) than...  相似文献   
5.
《能源学会志》2020,93(4):1602-1614
Microwave-assisted catalytic pyrolysis is considered to be a promising technology for coal-staged conversion due to its high efficiency and selectivity. This work was undertaken to investigate the pyrolysis behavior and products quality of microwave-assisted pyrolysis of low rank coal catalyzed by metallic catalysts (K, Ca and Fe) with both dielectric response and catalytic effect via a microwave tube furnace. The mechanism of metallic catalysts on catalytic cracking tar under microwave radiation was also investigated. The dielectric properties and physicochemical structure of coal chars were characterized by a vector network analyzer, XRD, FT-IR, SEM, EDS, and Raman. The chemical structure characteristics of generated tars were determined by FT-IR and GC-MS. Results manifested that microwave interacted preferentially with metal catalysts by polarization and conductivity loss could efficiently induce the occurrence of catalytic pyrolysis reactions to generate high yield syngas (CO + H2). Specifically, the dielectric loss factor of resultant chars was considerably improved with the introduction of metallic catalysts especial for Ca and Fe. Furthermore, it is found that metal catalysts dramatically enriched the amorphous carbon structure in produced chars whereas in favour of suppressing the trend of carbon graphitization. Additionally, the transformation of larger polycyclic aromatic compounds into lighter tar species was catalytically accelerated, resulting in the large proportion of single-ring aromatics in tar under the synergistic effect between microwave and metal catalysts.  相似文献   
6.
沈攀  陈新年  熊咸玉 《煤矿机械》2020,41(1):130-132
针对高应力软岩巷道围岩的大变形特征,设计了一种煤矿新型让压锚杆,主要运用钢套管内部约束热固性聚氨酯弹性材料来达到大变形让压的目的。试验表明,该锚杆与传统让压锚杆相比,具有让压距离大(为传统让压锚杆的3倍)、让压后承载性能稳定的显著特点。工程应用表明,该锚杆对深部高应力软岩巷道围岩稳定性能起到较好的控制作用。  相似文献   
7.
Abstract

Building thermal inertia and operation control strategies have impacted on the thermal performance of a radiant floor heating system. This study conducts a two-dimensional numerical analysis of an intermittently operated radiant floor heating system using the Re-Normalization Group model with Discrete Ordinates Radiation model. A detailed numerical simulation setups and various analyses are provided, including grid independency analysis, initial condition, time step sizes and external boundary conditions. Three different weekend day intermittent operation strategies are investigated. The results showed that Case 3 designed with pre-heating of 20?h has better performance compared to Case 1 designed with pre-heating of 8?h and Case 2 designed with pre-heating of 14?h. The average indoor air temperature differences of approximate 2.1, 1.6 and 1.2 K are observed for Case 1, Case 2 and Case 3, respectively, when comparing two-time slot at 8:00am on Friday morning and Monday morning. This significantly highlights the effect of thermal inertia and the potential of energy saving due to the utilization of intermittent operation. Therefore, the current study presents numerical simulation potential in evaluating the radiant floor heating effects on indoor thermal environment, taking into account building thermal inertia and transient external climatic conditions.  相似文献   
8.
An intervening barrier for photocatalytic water decomposition and pollutant degradation is the frustratingly quick recombination of e - h+ pairs. Delicate design of heterojunction photocatalysts by coupling the semiconductors at nanoscale with well-matched geometrical and electronic alignments is an effective strategy to ameliorate the charge separation. Here a facile and environment-friendly l-cysteine-assisted hydrothermal process under weakly alkaline conditions is demonstrated for the first time to fabricate ZnIn2S4/In(OH)3 hollow microspheres with intimate contact, which are verified by XRD, SEM, (HR)TEM, XPS, N2 adsorption-desorption, UV–Vis DRS and photoluminescence spectra. ZnIn2S4/In(OH)3 heterostructure (L-cys/Zn2+ = 4, molar ratio) with a band-gap of 2.50 eV, demonstrates the best photocatalytic performance for water reduction and MB degradation under visible light, outperforming its counterparts (In(OH)3 and ZnIn2S4). The excellent activity of ZnIn2S4/In(OH)3 heterostructure arises from the intercrossed band-edge positions as well as the unique hollow structure with large surface area and wide pore-size distribution, which are beneficial for the efficient charge migration from bulk to surface as well as at the interface between ZnIn2S4 and In(OH)3. This work provides an efficient and eco-friendly strategy for one-pot synthesis of heterostructured composites with intimate contact for photocatalytic application.  相似文献   
9.
A digital image processing (DIP) method associated with a MATLAB algorithm is used to evaluate cross sectional images of self-consolidating concrete (SCC). Two new parameters, such as inter-particle spacing of coarse aggregate and average mortar-to-coarse aggregate ratio, defined as average mortar thickness index (MTI), were proposed to quantitatively evaluate the static stability of SCC. Statistical models were developed to predict flowability of SCC mixtures. Test results revealed that the proposed DIP method and MATLAB algorithm can be successfully used to derive inter-particle spacing and MTI and quantitatively evaluate the static stability on hardened SCC samples. A probability density of 60% from histogram analysis appears to be a reasonable threshold for indicating a uniformly distributed SCC mixture. For a given mortar yield stress, a critical mortar viscosity of 1.30 Pa s tends to significantly affect the trend of slump flow changing with MTI. The investigated relationship between parameters measured from DIP method and existing theoretical frames is well correlated. The outcome of this study can be of practical value for providing an efficient and useful tool in designing mixture proportions of SCC.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号